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Abstract

We give necessary and sufficient conditions for a scoring rule to be proper
(or strictly proper) for a quantile if utility is linear, and the distribution is un-
restricted. We also give results when the set of distributions is limited, for
example, to distributions that have first moments.
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1. Introduction. In subjective Bayesian practice, elicitation is a critical matter (Sav-
age, 1971; O’Hagan, 1998; O’Hagan et al., 2006; Garthwaite, Kadane, and O’Hagan,
2005). Many papers (Kadane et al., 1980 and Garthwaite and Dickey, 1985, 1988) rely
on elicitation of quantiles even if the parametric forms they target are expressed in terms of
moments. There are two good reasons for this. First, moments are not easy to understand.
Second, moments are sensitive to extreme outliers, and may even not exist. Quantiles, on
the other hand, always exist and are more intuitive.

There are two principal methods of eliciting quantiles, the direct method and by use of
scoring rules. In the direct method, the expert or other person being elicited is asked, for
example, “what value would leave you indifferent between betting that the outcome will
be greater than the value you name and less than the value you name?”, to obtain a median
(see Dey and Liu, 2007). Other values are then obtained by bisection.

Scoring rules, by contrast, give the expert an explicit penalty that is a function of the
elicited quantile and the outcome. (Some authors, such as Gneiting and Raftery, 2007,
define scoring rules to be gains to the expert rather than penalties, in which case a minus
sign will convert results from one definition to the other.) The implicit assumption is that
the expert’s utility is linear in the score. For example, absolute error is often thought of as a
scoring rule for the median. A scoring rule is called proper if it is minimized at the desired
quantile. It is strictly proper if it is minimized only at the desired quantile. Gneiting and
Raftery (2007), following Cervera and Munoz (1996), propose a specific class of scoring
rules that they prove to be proper for a certain restricted class of distributions. Additionally
they write “We do not know whether [this class] provides the general form of proper scoring
rule for quantiles.”

To address this issue, there are three problems to overcome. The first is that the condi-
tion that a scoring rule be proper is too weak to be useful. For example, a constant function
is a proper scoring rule (because the desired quantile minimizes it), but so does every other
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possible elicited value. Hence the main focus has to be on strictly proper scoring rules.
Second, quantiles are not necessarily unique. For example, the pdf

f(x) =

8<:
1=2 0 < x < 1
1=2 2 < x < 3
0 otherwise

has the whole interval [1,2] as medians. Finally, to be valid no matter what the underlying
distribution is, one has to be careful about infinite expected scores. For example, absolute
error under a Cauchy distribution has infinite expected score for all choices of median,
making it not strictly proper.

In response to these challenges, we focus on strictly proper scoring rules (although we
find a characterization of proper scoring rules as well). We define quantiles in a way that
yield a closed interval in general (and specializes to a point in the case of an absolutely
continuous distribution with positive density at the quantile). We extend the notion of
proper scoring rule to mean that every point in this closed interval minimizes expected
score, and the notion of strictly proper scoring rule to mean that only these points do so.
Finally, our main result is valid for the class of all distributions, although we also give
results for classes of distributions having certain finite moments.

2. Characterization of proper scoring rules. In this section, we give a characteri-
zation of (strictly) proper scoring rules for a single quantile in Theorem 1. Throughout this
discussion, 0 < � < 1, P is a probability distribution over a set X of real numbers, and X
is a random variable whose distribution is P . Let F (x) = P (X � x) stand for the c.d.f. of
X , and let G(x) = P (X � x) be the symmetrically defined function for the upper tail. It
is useful to note that, for all a < b,

P (a < X < b) = 1�G(b)� F (a):(1)

We use the functions F and G to define quantiles.
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LEMMA 1. Let X be a random variable with distribution P . The set of � quantiles of
X is a nonempty closed interval [q�; q

�]. Also,

� If q� > q�, then G(q) = 1� � for all q 2 (q�; q
�] and F (q) = � for all q 2 [q�; q

�).

� If F (q) = � and t > q�, then P [q < X < t] > 0.

� If G(q) = 1� � and t < q�, then P [t < X < q] > 0.

PROOF. Define A = fx : F (x) � �g and B = fx : G(x) � 1��g. Define q� = inf A
and q� = supB. Since F (x) � F (q�), for all x > q�, it follows that F (q�) � �. Similarly,
G(q�) � 1� �. Note that both A and B are semi-infinite intervals, and both q� and q� are
finite. Every x < q� is in B and every x > q� is in A, so that q� � q�. The set of quantiles
is A \B, which is a closed and bounded interval.

For the first bullet, if F (q�) > �, no number greater than q� is in B, hence a necessary
condition for q� > q� is F (q�) = �. Similarly, a necessary condition for q� > q� is
G(q�) = 1 � �. For every t < u in the open interval (q�; q

�), F (t) = F (q�) and G(u) =
G(q�), hence the first bullet holds.

For the second bullet, it is clear that G(t) < 1� � for all t > q�. Then (1) implies

P (q < X < t) = 1�G(t)� F (q) > 1� (1� �)� � = 0:

The third bullet is proven in similar fashion, since F (t) < � for all t < q�. �
Let g� : X � R ! IR be a function, where R is the set of allowed values for the

quantile of interest, e.g., the convex hull of X , or even its closure. Suppose that we want to
use g�(x; q) as the penalty to an elicitee for giving q as the � quantile of P when X = x is
observed238(63 0 Td [(>)]Tv)25(al.)]TJ -24.n.5521/F24/F25 7.96n.55210(in)521/40(oin)52125(vinin)521494 0 Td [(q)]TJ/F25 7.67of



� there is a number d(a; b; �) such that

g�(b; q) = d(a; b; �)� �

1� �
g�(a; q);(3)

for all q 2 [a; b], and

� g�(a; a) � g�(a; b).

The scoring rule is strictly proper for the � quantiles of P0 if and only if, in addition to the
above conditions, g�(a; a) < g�(a; b).

PROOF. Let P� be the distribution such that P�(X = a) = �. Every number in the
interval [a; b] is an � quantile of X . A necessary condition for g� to be proper is that
P�[g�(X; q)] be constant as a function of q. Trivially,

P�[g�(X; q)] = �g�(a; q) + (1� �)g�(b; q):(4)

This is constant in q if and only if there is a number d(a; b; �) such that (3) holds for all
q 2 [a; b]. Another way to understand (3) is that, aside from a shift of level, �g�(a; �)
and (1 � �)g�(b; �) are curves with slopes that are negatives of each other for all q 2
[a; b]. Another necessary condition for g� to be proper comes from consideration of Pp, the
distribution such that Pp(X = a) = p.

Pp[g�(X; q)] = pg�(a; q) + (1� p)g�(b; q)

= pg�(a; q) + (1� p)
�
d(a; b; �)� �

1� �
g�(a; q)

�
= g�(a; q)

�
p� (1� p)�

1� �

�
+ (1� p)d(a; b; �):

The minimum of this expression, as a function of q, occurs at the minimum or maximum
for g�(a; �)



THEOREM 1. Let P0 be a collection of probability distributions on a subset X of IR
such that, for every a; b 2 X , P0 contains every distribution concentrated on fa; bg. Let
g� be a real-valued function defined on X �R, where R is the convex hull of X . Then g�
is a (strictly) proper scoring rule for the � quantiles of P0 if and only if for each P 2 P0

P [g�(X; q)] exists (is finite), and there exists a (strictly) increasing function s such that

g�(x; q)� g�(x; x) =

�
�[s(x)� s(q)] if x > q,
(1� �)[s(q)� s(x)] if x < q.(5)

PROOF. First, we prove necessity by assuming that g� is (strictly) proper for the set
of all two-point distributions. This allows us to assume that g� satisfies the two bullets in
Lemma 2. Define g�(x; q) = g�(x; q) � g�(x; x). The second bullet of Lemma 2, namely
that g�(a; a) � g�(a; b), when applied to all a < b implies, among other things, that
g�(a; q) and g�(a; q) are monotone increasing in q for q > a and monotone decreasing in
q for q < a (with strict monotonicity in the strictly proper case). From this it follows that
g�(x; q) � 0 for all x; q.

Rewrite (3) as
d(a; b; �) = g�(b; q) +

�

1� �
g�(a; q);(6)

for all a � q � b. Substitute q = a and q = b on the right side of (6) and set the two results
equal to each other to obtain

g�(b; a) +
�

1� �
g�(a; a) = g�(b; b) +

�

1� �
g�(a; b);(7)

which can be rewritten as
(1� �)g��(b; a) = �g��(a; b):(8)

In other words, specifying g��(x; q) for x > q determines its values for x < q by (8).
Let r(q) = g��(0; q), which we have already shown is (strictly) increasing for q > 0 and

(strictly) decreasing for q < 0. It is more convenient to work with a monotone function
such as

s(q) =

(
r(q)
1�� if q � 0,
� r(q)

�
if q < 0,

(9)

which is (strictly) increasing. Next, set the right sides of (6) and (7) equal to each other:

g�(b; q) +
�

1� �
g�(a; q) = g�(b; b) +

�

1� �
g�(a; b);

which rearranges to become

g��(b; q) =
�

1� �
[g��(a; b)� g��(a; q)];(10)

for a � q � b. Hence, for 0 � q � x, we have from (10) (with a = 0 and b = x),

g��(x; q) =
�

1� �
[r(x)� r(q)] = �[s(x)� s(q)]:
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For q � 0 � x, we have from (10),

g��(



2. If q is a quantile and t is not a quantile, then P [h�t (X; q)] � 0, with strict inequality
for unique minimization.

Let q be an � quantile of X , and let t < q. Then, we can write

P [h�t (X; q)] = [s(q)� s(t)][(1� �)F (t)� �G(q)] + [(1� �)s(q) + �s(t)]P [t < X < q]

�
Z

(t;q)

s(x)dP (x)

= s(t)[�� F (t)] + s(q)[1� ��G(q)]�
Z

(t;q)

s(x)dP (x):(14)

First, assume that t is also an � quantile of P . Because t < q, q > q� and t < q� so
that F (t) = � and G(q) = 1 � � according to Lemma 1, and P [t < X < q] = 0. This
establishes condition 1.

Next, let q be an � quantile of X , and let t < q not be an � quantile. In this case,
G(q) � 1� �, and Z

(t;q)

s(x)dP (x) � s(t)[1� F (t)�G(q)]:(15)

There are two cases. (i) If G(q) = 1 � �, then Lemma 1 says that P (t < X < q) > 0,
which implies that the inequality in (15) is strict. It follows that (14) is strictly less than
[1 � � � G(q)][s(q) � s(t)] = 0. (ii) If G(q) > 1 � �, then (14) is at most [1 � � �
G(q)][s(q) � s(t)] � 0 with strict inequality if s is strictly increasing. This establishes
condition 2.

Next, let q be an � quantile of X , and let t > q. Then, we can write

P [h�t (X; q)] = [s(q)� s(t)][(1� �)F (q)� �G(t)]� [(1� �)s(t) + �s(q)]P [q < X < t]

+

Z
(q;t)

s(x)dP (x)

= �s(q)[�� F (q)]� s(t)[1� ��G(t)] +

Z
(q;t)

s(x)dP (x):(16)

First, assume that t is also an � quantile of P . Because t > q, t > q� and q < q� so
that F (q) = � and G(t) = 1 � � according to Lemma 1, and P [q < X < t] = 0. This
establishes condition 1.

Finally, let q be an � quantile of X , and let t > q not be an � quantile. In this case,
F (q) �



EXAMPLE 2. The scoring rule g1=2(x; q) = jx�qj in Example 1 corresponds to s(x) =
2x in Theorem 1 with g1=2(x; x) � 0. If desired, one could extend this example to all
distributions by setting g1=2(x; x) = �jxj. The scoring rule would no longer be jx� qj, but
g1=2(x; q)� g1=2(x; t) would be the same as it would be in Example 1 for all



where c is chosen to make
P1

n=1 P (fxng) = 1. Then

P [jf(X)j] =
1X
n=1

cjf(xn)j
[1 + jf(xn)j]n2

<1;

so that P 2 P0. Also,

P [jh(X)j] =
1X
n=1

cjh(xn)j
[1 + jf(xn)j]n2

�
1X
n=1

cn[1 + jf(xn)j]
[1 + jf(xn)j]n2

=1: �

Lemma 3 lets us identify all strictly proper scoring rules for classes of distributions defined
by certain means being finite.

THEOREM 2. Let F be a collection of real-valued functions defined on IR. Let P0 be
the set of all probability distributions on IR that give finite mean to f(X) for every f 2 F .
Define H to be the set of all functions h that satisfy (18) for all f 2 F . Then g� is a
strictly proper scoring rule for the � quantiles of P0 if and only if there exists h 2 H and a
strictly increasing function s such that, for all real t, g�(x; q) = h(x) + h�t (x; q), where h�t
is defined in (13).

PROOF. First note that all distributions supported on two points are in P0, no matter
what F is. For the “if” direction, we already showed in the proof of Theorem 1 that every
h�t of the form (13) is strictly proper for the class of all probability measures. Adding
a function that has finite mean for all P 2 P0 produces another strictly proper scoring
rule for P0. For the “only if” direction, assume that g� is strictly proper. It follows that
P [g�(X; t)] is finite for every P 2 P0 and every real t, hence h(x) = g�(x; t) 2 H. In the
proof of Theorem 1, we showed that there is a strictly increasing s such that, for every real
t, g�(x; q)� g�(x; t) = h�t (x; q) from (13). Hence g�(x; q) = h(x) + h�t (x; q). �

4. Conclusion. This paper characterizes proper and strictly proper scoring rules for a
quantile if utility is linear in score. Kiefer (2010) following Karni (2009) finds a proper
scoring rule under more general risk-averse utility. Characterizing proper and strictly
proper scoring rules under those conditions remains open.

It is obvious that the sum of (strictly) proper scoring rules for several quantities is
(strictly) proper. But are there others? The characterization of such rules is also currently
unsolved.
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